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I. Formulation of the Problem. The boundary layer flow past small inequalities of a 
solid surface, all kinds of ledges, steps, bump, etc., is one of the most typical examples of 
a locally forced, high-Reynolds number flow of a viscous fluid. The interest in investigating 
such flows may be explained by the fact that the fluid motion in the vicinity of a surface is 
generally accompanied by high pressure gradients, drastic changes of the skin friction, and 
the formation of local separation zones. An approximate mathematical model of the effects 
resulting in such flows was obtained successfully by employing asymptotic methods to solve 
the Navier-Stokes equation [1-3]. It becomes apparent that the interaction between the 
boundary layer and the freestream is of decisive importance for the local character of a flow 
for the majority of situations interesting from the practical point of view. 

An asymptotic theory of periodic flows in channels with weakly deformed walls was devel- 
oped in [4~ The results obtained prove, in the first place, that local processes in 
unsteady flows are exceptionally complex if the undisturbed velocity profile reveals velocity 
reversals at some instants of time. 

A plane, locally disturbed periodic laminar boundary layer flow of an incompressible 
fluid is considered in the present study. The boundary layer of such type is typically 
present in the flow past a semiinfinite flat plate, with the freestream velocity U~(I + 
k cos t), where t is the nondimensional time, normalized by T~(2~) -I with T= being the period 
of oscillation. We will assume that the constant t satisfies the condition 0 < k < I, so 
that the freestream velocity does not change its direction over the entire period of oscilla- 
tion. The system of Cartesian coordinates has the origin at the leading edge of the plate 
with the abscissa pointing downstream along the plate (see Fig. I). The coordinates of the 
points in the plane of the flow are denoted by (2~)-IU=T~(x, y) and the corresponding com- 
ponents of the velocity vector by (u, v)U~. The relative change of pressure with respect to 
the freestream pressure is pU~, where the density p as well as the kinematic viscosity u are 
considered as constants. The Navier-Stokes equations in nondimensional variables take the 
form 

0-5- + UTxx + v~-~- + 7xx + k s i n  t = ~ \oz~ + ~/.), 

o--{ + u -5-~ + v -s + o u Re \ oz~ + ~ j ,  7 f  + -~j = 0" 

where Re - U~T~/(2~w) >> i is the Reynolds number. Note that due to special selection of the 
length scale, the Strouhal number is equal to the unity. 

Let us assume that the surface of the plate has a step of height h at a distance L from 
the leading edge and, consequently, the shape of the surface can be described as 

g = h i ( x - - L ) ,  O ~ x < + c ~ ;  

/(z) = o (x < o ) ; / ( x )  = t (x ~ o). 
(1.2) 

Before imposing stricter limitations on the selection of h and L, let us consider some 
properties of the flow in the undisturbed boundary layer. The boundary layer solution past a 
smooth plate is written as u-- U(x, Y, t) + o(I), u ~ Re-i/2[V(x, Y, t) + o(1)], p = 0(I), Y = Rel/2 y = 
o 0 ) ,  u = OWlOr.  

The functions U and V are the solution of the standard boundary-value problem for an 
unsteady boundary layer, where the function k sin t represents the pressure gradient, and the 
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Fig. I 

velocity on the outer edge of the boundary layer equals U(x, +~, t) = I + k cos t. The 
presented boundary-value problem is fully investigated in [7, 8]. In particular, it can be 
shown that in the vicinity of the leading edge of the plate the flow is quasisteady and, 
consequently, the skin friction on the solid surface a(x, t) = 0U/aY (x, 0, t) can be reliably 
estimated as 

a (x, t) = x -~/2 (t  + k c o s  t)~/21~ (0) + . . .  (x---)- + 0), (1.3) 

where f~ is the second derivative of the Blassius function. 

At a larger distance from the leading edge, the boundary layer has a two-layer structure. 
In the near-wall region the Stokes solution is valid thus 

a ( x , t ) = k c o s ( t + ~ ) +  . . .  (x-+-+~).  (1.4) 

The estimates (1.3) and (1.4) imply the existence of a particular cross section x = L 0 in the 
boundary layer, to the left of which (0 < x < L0) the skin friction remains positive at any 
instant of time. For x = L0, the function a(x, t) becomes zero once per period, say at the 
instant of time t = to, 0 S t o < 24. If x > L 0, then the skin friction becomes negative over 
some part of the period and the flow reversal occurs in the boundary layer. 

It is assumed that L = L 0 + Re-i/82, h = Re-S/BH and (2, H) = 0(i). The parameter 2 is 
introduced for the sake of generality and its role will be shown below. 

Let us describe some analytical properties of the solution of the undisturbed boundary 
layer problem in the vicinity of x = L 0 and, incidentally, introduce a series of notations 

{U, W} = ~ {U~ (Y, t), W~ (Y, t)} (x--  Lo)n (x--+ Lo); 
~ 0  

-6-  

(Y---+ + 0); 

{ ~ ,  U~, a~, b~, c~, d~} = {Wnh, U~k, anh, b~h, end, d~} ( t --  to) h (t-+ to). 
h=O 

According to the estimate of the instant t = t o and the distance x = L 0, we have a00 .... 
a01 = 0 and at0 < 0. The flow velocity on the outer edge of the boundary layer is denoted by 
~(t) = I + k cos t, 60 = I + k cos t o > 0. 

Let us consider the flow within the region around the deformation. For simplicity, the 
consideration will be restricted to the fluid flow past a flat plate. 

2. 0uasisteady Regimes of In~ection. Let us assume that a periodic-in-time solution of 
the Eq. (I.I) exists in the time interval 0 S t < 24 near the surface (1.2). By virtue of 
the small extent of the region of interaction, the local Strouhal number turns out to be 
small. Because of this, the local flow is expected to be quasisteady at least over a large 
part of the period. 

The first characteristic regime of the flow occurs art - t o = 0(I). At these instants 
of time, the skin friction has a nonzero value and, consequently, the velocity profile in the 
near-wall region of the undisturbed boundary layer depends linearly on the perpendicular 
coordinate. Obviously, the flow near the obstacle represents the standard flow with the 
three-layer scheme of interaction (triple-deck structure) [1-3] and the dependence of the 
solution on time is parametric. 
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We will show the estimates of the viscous sublayer thickness in the region of interaction 
and the pressure at the wall by taking into account the dependence of the above quantities on 

time: 

x - -  L = O ( R e - ~ / s •  

g = O(Re-~/s• p = O(Re-~/~• (2.1) 

It follows from the estimates (2.1) that t ~ t o the characteristic length scales of the 
viscous sublayer grow while the wall pressure drops. It can be shown that the momentum 
equation for the viscous sublayer, nonlinear for t - t o = 0(I), becomes linearized if t ~ t o . 

The linearity condition for the velocity profile in the viscous sublayer does not hold 
for suffiently small values of It - t0[. Indeed, according to (2.1), the undisturbed velocity 
profile in the viscous sublayer can be represented in the form 

U = ~e-~/s~ (t)X/~a o (t)~/aUz + Re  -~/4 + bo (t) • (t) a o (t)-~/~y~ + . . . .  

yz = gRe~fl• = O( l ) .  

If t ~ t o the terms of the above expansion are of the same order for a0 = O(Re -~/x~) or t- t~ 
=O(Re-Z/2s). In this time interval the new regime of interaction is constituted. 

The second characteristic regime of interaction also appears to be quasilinear. Without 
providing the derivation, we will formulate the boundary-value problem for the near-wall 
viscous sublayer in which the variables are represented as 

= to -~ Re-X/~sti, x L o + Re-X/s/ + he- -  x2, 

y = Re-aPy~,  (x~, g:, t~) = 0(1),: 

u = Re  -~/~ booY ~ + ao~t~g ~ + R e - n / ~ u e  + . . . .  

v = Re -~ /~u~  ~ ... ,  p = Re-~/a~p~ + ...  

The interaction problem has the form 

where 

i ~ _ a2u2 au 2 a~ 2 "~ au 2 
ax2 aye' ax,., + aye-- = 0,., ( 2 .3  ) 

P 2 =  ~ o as x~--s;  u ~ = ( a x o I + b o o A ~ ) y ~ + a o ~ t ~ A  ~ + o ( l )  (g~->-+co);  u~=a~01Y ~ + o ( i )  (x~-+ 
--oo 

-- oo); u~ =--ao=t~Hf(x2), v 2 = 0 (g2 = 0). In deriving the boundary-value problem (2.3), the 
employed procedure is analogous to those given in [5, 6, 9]. Analysis of the boundary-value 
problem solution (2.3) for t 2 ~ 0 shows that the asymptotic distributions (2.2) lose general- 
ity for t 2 = O(Re-3/u2). The originated, third regime of interaction appears to be the most 
interesting since it is related to the simultaneously exhibited nonlinearity and unsteadiness 
of the flow. 

3. Unsteady Regime of Interaction. In order to describe the third characteristic regime 
of interaction, we introduce new independent variables m = L 0 ~- Re-~/s/ ~- Re-~/!z~, t ---- t o + Re-i/16t3, 
(xa, ts)----O(i). In the part of the region of interaction where the flow is potential (region 
i), the solution can be represented as Y31 -- Re~/~g ---- O(1)~ {u, u, p} ~- {• 0, 0} ~- ... -~ Re-~/s 

{ua1(x3, YsI, t3), va1(xs, g~x, t3), P.~1(x~, YsI, t3)} ~- ..- with the expression usual for the theory of inter- 
action 

-~oo 

P31 (x~,~ 0, t3) = 
- - o o  

d3  

Let us write the solution for the main part of the boundary layer: 

u = Uoo (Y)  + Re-~/16tsUoz ( y )  + Re-1/s[t~U02 (y) + 

3 + lU~ o (Y)  + u32 (x3, Y:,~ t3)] + Re -3/16 [t3Uo3 (Y)  + l t3Un  (Y)  + 
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+ /~33 (x3, Y, ta)] -]- Re-I/4 [t~Uo4 (Y) + lt~U12 (Y) + x3Ulo ( r )  + 
(3.1) 

+ Z=E~o (Y) + us4 (xs, Y-, ts)J + . . . .  

U = Re-8/a/~82(xs, Y, ts) ~- Pte-7/16y33(x3, Y ,  is) -~ 

-t- lte-~/'Z[vs~(xa, Y,. ta) - -T~o(Y ) ] + ...,~ p = Re-a/spa.,_(x3, t~) + ... 

The result of integration of the equation for the unknown coefficients of the expansion 
(3.1) can be written down easily. Via restrict the presentation to only the longitudinal 
component of the velocity vector 

r p 

u~2 = A3~ (xs, t~) Uoo (r) ,  us3 = As2 (xs, t3) Uoo (Y) + tsA3~U~t (Y),~ 
( 3 . 2 )  

us~ = Ass (xs, ts) Uoo ( r )  + tsAsiUox (Y) + -5" A3~Uoo (Y) + (t~U'o= (Y) + lU~o ( r )  ) As~. 

Here A31, A32, and A33 are unknown functions which should be found by considering the viscous 
sublayer (region 3). We present the solution in the viscous sublayer as 

~e-S/16[ 1 t r . . 2  booAal) Ys]+  u = l~e - ~ / 8  t__~ boo~ + ~ [ T  ~ 'o~  + (t~ao~ + Za~o + 

+ Re-t / t  [ t ~ t ~ a 1 (t~b lb~o ) g~ + lt~a n "%- doogs + "-f- ~co~Ya + ~ ~ s o~ + (t]aos + + 

i 
la~o ) Aal ta)] + . . .  + booAa~ + tabolA~) gs + T booA~12 + (t~ao~ + + us (xs, is,  ,: 

�9 + - - T  boo- g-   + 
- OAa~ ] 

- -  booA~l OA31 ( t~ao~ + la~o ) ~ ya + va (xa, gs, ts) + ax----~ Ys - -  �9 �9 �9 ,, 

p = Re-a/Spa@s, t~) + ..., Ya ---- g RegiS6 = O(l).  

The boundary-value problem for the viscous sublayer of the region of interaction obtained by 
using a standard procedure and taking into account (3.2), has the form 

where 

aAa1 0% a2u3 au 8 0% (3.3) 
@3 + boog ~ + boog3V 8 booYs-~a + ~ + =--,--+--=0, 

~ H-(= OA31 (s, t8) ds 
Pa = ~ 3 as % -- s; 

- - c o  

~ = o(l) (u~-~ + ~ ) ;  u~ = o0) (x~-~ -oo) ;  

I t ~a 1 u a = - -  (Aat + HI) 7 -  boo (A31 + HI) + ta o~, + lalo ,: v8 = 0 (y~ = 0). 

The condition for the existence of the solution of the boundary-value problems of the 
type (3.3) was obtained in [I0, ii]. We introduce new variables and parameters: 

.114~-318,.p X3 "~- ~oa~ll6b~o 1laX, ta = ^o ~o2 ~, 

A31 = l i b  (X, T), ~ = lalo• 

t . . . .  11~. -114 
Ho = =7- B~ ao~ �9 

Let us write the condition for the existence of the solution of the problem (3.3) 
new variables in the from 

r (514) r (314) 
? =2~--77~, Z= 2s/2 r(514) 

in the 

(3.4) 

Now, it is necessary to state the initial condition for (3.4). It was shown above that 
for ITI >> i the flow is quasisteady, i.e., the left-hand side of the Eq. (3.4) is negligibly 
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small comparison to the right-hand side. For T ~ -~, the leading term on the right-hand side 
is proportional to the integral of the sum B(X, T) + f(X). This yields immediately that the 
quasisteady condition for the flow for T ~ -~ is equivalent to the initial condition for Eq. 
(3.4) in the form 

B(X, T)-+--/(X)(T~--~). (3.5) 

The problem formulated in (3.4)-(3.5) contains two nondimensional parameters. Their 
physical meaning is obvious; H 0 represents the effective height of the obstacle for a given 
region of interaction and the constant a characterizes the distribution of the obstacle in 
the boundary layer. We also mention here that the combined variable T 2 + a can be viewed as 
an undisturbed skin friction upstream from the obstacle; the smaller a, the stronger the flow 
reversal in the undisturbed boundary layer. 

4. Well-Posedness of a Cauchy Problem and the Stability of the Solution. We mention 
here the analogy between (3.4) and the unsteady case of the equation based on the edge separa- 
tion theory [I0, Ii]. It was shown in [12] that the Cauchy problem for the edge separation 
equation turns out to be ill-posed for sufficently general initial conditions. This brings 
up the question about the well-posedness of the problem in (3.4)-(3.5). Moreover, the condi- 
tion of periodicity of the flow requires that the solution of the problem considered here for 
T ~ +~ also converges to the quasisteady limit (3.5). 

We consider all the above questions in the frame of the linear theory which is correct 
for obstacles with height H 0 << i. (A more complete investigation of the properties of (3.4)- 

(3.5) will be performed separately.) Neglecting the nonlinear terms in Eq. (3.4) and carrying 

out  t h e  F o u r i e r  t r a n s f o r m a t i o n  i n  t h e  form B*(w, T ) =  2 B ( X ,  T)exp( - - i coX)dX,  t h e  o r i g i n a l  

p roblem y i e l d s  t h e  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  s o l u t i o n  s a t i s f y i n g  t h e  i n i t i a l  c o n d i t i o n  
( 3 . 5 ) ,  has  t h e  form 

B* = - - / *  (c0) t - -  71 (ira) 5/41 ~ ] j exp [r (s)] ds ,. 

1 
"(~) = - 7  '~0 (i~)~/4 (~ - r~) + [~0~ ( i~f /~ + "~1 (i~)~/~ I ~ I] (~ - r),  (4 .  l )  

'a = 2 -~"~  1/~, ar~ [(i~) m] ~ ( - -  m~, ~ ) .  

Here f*(~) is the Fourier transform of the deformation pattern. For simplicity, the function 
f(X) can be considered sufficiently smooth. 

The solution of (4.1) for I~I ~ ~ at any arbitrary finite instant of time T gives the 

formula B* -- 70(T2+ G)/*(~) (I +o(I)). For large time scales this representation turns out to 71(i~)i/2L~ l 

be nonuniform. Because of this, we take T = I~;a/4TI, where T I = 0(i). Then, for I~l ~ ~ we 

T2 
?0 i (i + o(l)). It follows directly from the previ- obtain the estimate B* = --/* (~) ~oT~ + 71 (isign ~)i/~ 

ous relation that for T I ~ • the solution (4.1) has quasisteady asymptotes. 

Thus, the existence of the solution and its properties are ensured by the well-posedness 
of the problem (3.4)-(3.5) for infinitesimally small values of H 0. One can hope that the 
solution of the nonlinear equation in the limiting case possesses the analogous property, at 
least: in some range of variability of H 0. 

Along with the question of existence of the solution of the problem (3.4)-(3.5), we will 
examine the stability of such a solution. For simplicity, let us assume H 0 = 0 and f(x) = 0. 
The equation becomes linear and uniform with the uniform initial condition. The solution of 
such a problem is trivial, i.e. B = 0 (for the undisturbed flow). Let us introduce in the 
stream an infinitesimally small disturbance at time T = T O which produces some distribution 
B(X, To). Assuming that the further evolution of the perturbation is described by (3.4), 
with H 0 = f = 0 we get the expression for the Fourier transform of the solution 

B*=B*(~,To)e~P{--~,o(Z~)~/~(T~--T~)--[vo(i~f/~o+~,~(i~)~/~l~l] (V--To) }. (4 .2)  
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For the inverse Fourier transformation to exist, it is necessary that the function B*(~, 
T) does not grow exponentially for ~ ~ • Obviously, this can be achieved only for a narrow 
class of initial data. In this way, the Cauchy problem with the initial data determined at a 
finite instant of time turns out, generally speaking, to be ill posed. Similarly to the edge 
separation theory, the fact that the problem is not well posed is related to the intensive 
growth of the amplitudes of the shortwave harmonics of the initial disturbance for the in- 
stants of time following T o . In this case, in order to describe the evolution of the distur- 
bances, an additional analysis of the solution for finer time and space scales [than those 
used while deriving (3.4)] is needed. Clearly, the initial disturbance can be adjusted in 
such a way that the inverse Fourier transform in Eq. (4.2) exists at any arbitrary instant of 
time (as example, for disturbances with a finite spectrum). Then, for T ~ +~ the disturbance 
decays. 

Let us allow the spectrum to contain harmonics with high but finite wave numbers. In 
the process of evolution of such disturbances, two stages can be determined. During the 
first stage, a rapid growth of the amplitude of the shortwave harmonics takes place. Then, 
at some instant of time, the perturbation decays. Clearly, the higher the wave number, the 
later the decay of the corresponding harmonic takes place. 

The author gratefully acknowledges V. V. Sychev and A. N. Ruban for their attention to 
this work and for a useful discussion of the results. 
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